Exercise 1.5.25

Suppose a sphere of radius 2 satisfies $\frac{\partial u}{\partial t}=\nabla^{2} u+5$ with $u(x, y, z, 0)=f(x, y, z)$ and on the surface of the sphere it is given that $\nabla u \cdot \hat{n}=6$, where \hat{n} is a unit outward normal vector. Calculate the total thermal energy for this sphere as a function of time. (Hint: Use the divergence theorem.)

Solution

The governing equation for the sphere's temperature u is

$$
\frac{\partial u}{\partial t}=\nabla^{2} u+5
$$

Comparing this to the general form of the heat equation, we see that the mass density ρ and specific heat c are equal to 1 and that the heat source is $Q=5$. The thermal energy density e is $\rho c u=u$, so the left side can be written in terms of e .

$$
\frac{\partial e}{\partial t}=\nabla^{2} u+5
$$

To obtain the total thermal energy in the sphere, integrate both sides over the sphere's volume V.

$$
\iiint_{V} \frac{\partial e}{\partial t} d V=\iiint_{V}\left(\nabla^{2} u+5\right) d V
$$

Bring the time derivative in front of the volume integral on the left and split the volume integral on the right into two.

$$
\frac{d}{d t} \iiint_{V} e d V=\iiint_{V} \nabla^{2} u d V+5 \iiint_{V} d V
$$

The triple integral on the left represents the total thermal energy in the sphere. The second integral on the right side is the sphere's volume.

$$
=\iiint_{V} \nabla \cdot \nabla u d V+5 \cdot \frac{4}{3} \pi(2)^{3}
$$

Apply the divergence theorem here to the remaining triple integral. The volume integral becomes an integral over the sphere's surface.

$$
=\oiint_{S} \nabla u \cdot \hat{n} d S+\frac{160 \pi}{3}
$$

Use the fact that $\nabla u \cdot \hat{n}=6$.

$$
=\oiint_{S} 6 d S+\frac{160 \pi}{3}
$$

The closed surface integral is just 6 times the surface area of the sphere.

$$
\begin{aligned}
& =6 \cdot 4 \pi(2)^{2}+\frac{160 \pi}{3} \\
& =96 \pi+\frac{160 \pi}{3} \\
\frac{d}{d t} \iiint_{V} e d V & =\frac{448 \pi}{3}
\end{aligned}
$$

To solve for the total thermal energy, integrate both sides with respect to t.

$$
\iiint_{V} e d V=\frac{448 \pi}{3} t+C
$$

To determine C, set $t=0$ and use the prescribed initial condition $u(x, y, z, 0)=f(x, y, z)$.

$$
C=\iiint_{V} e(x, y, z, 0) d V=\iiint_{V} u(x, y, z, 0) d V=\iiint_{V} f(x, y, z) d V=\iiint_{V} f(x, y, z) d x d y d z
$$

Therefore, the total thermal energy in the sphere is

$$
\iiint_{V} e d V=\frac{448 \pi}{3} t+\iiint_{V} f(x, y, z) d x d y d z .
$$

